Double Roman Domination on graphs with maximum degree 3

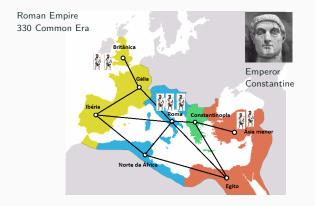
11th Latin American Workshop on Cliques in Graphs

Atílio Gomes Luiz and Francisco Anderson da Silva Vieira October 23, 2024

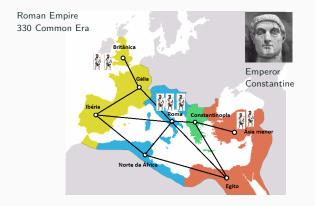
Campus de Quixadá @ Universidade Federal do Ceará

- 1. Double Roman Domination
- 2. Result 1: NP-Completeness
- 3. Result 2: Double Roman Domination on Snarks
- 4. Concluding Remarks

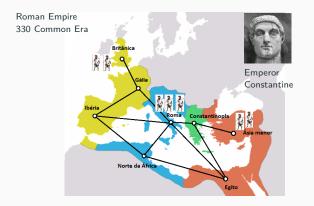
Double Roman Domination



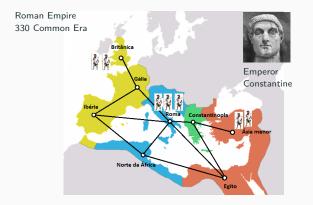
• When attacked, a region must be protected by at least 2 military troops.



- When attacked, a region must be protected by at least 2 military troops.
- Each region can be assigned 0, 1, 2 or 3 troops.

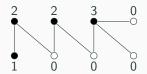


- When attacked, a region must be protected by at least 2 military troops.
- Each region can be assigned 0, 1, 2 or 3 troops.
- If a region has fewer than 2 troops, then it must have "stronger" neighbors.



- When attacked, a region must be protected by at least 2 military troops.
- Each region can be assigned 0, 1, 2 or 3 troops.
- If a region has fewer than 2 troops, then it must have "stronger" neighbors.
- Troops can move to a neighboring region only if at least one troop remains at the origin.

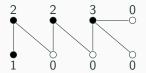
Luiz and Vieira



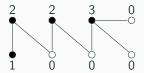
Double Roman Dominating Function

Given a simple graph *G*, a function $f: V(G) \rightarrow \{0, 1, 2, 3\}$ is a **Double Roman Dominating Function** (DRDF) of *G* if:

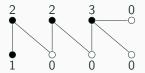
 every vertex v ∈ V(G) with f(v) = 0 has at least two neighbors with label 2 or at least one neighbor with label 3.



- every vertex v ∈ V(G) with f(v) = 0 has at least two neighbors with label 2 or at least one neighbor with label 3.
- every vertex v ∈ V(G) with f(v) = 1 has at least one neighbor w with f(w) ≥ 2.

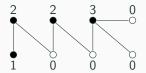


- every vertex v ∈ V(G) with f(v) = 0 has at least two neighbors with label 2 or at least one neighbor with label 3.
- every vertex v ∈ V(G) with f(v) = 1 has at least one neighbor w with f(w) ≥ 2.



A DRDF partitions V(G) into at most 4 subsets V_0, V_1, V_2, V_3 .

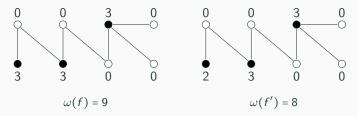
- every vertex v ∈ V(G) with f(v) = 0 has at least two neighbors with label 2 or at least one neighbor with label 3.
- every vertex v ∈ V(G) with f(v) = 1 has at least one neighbor w with f(w) ≥ 2.



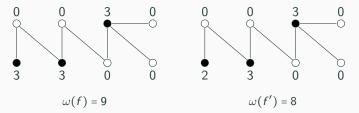
A DRDF partitions V(G) into at most 4 subsets V_0, V_1, V_2, V_3 .

• Alternative notation for DRDF: $f = (V_0, V_1, V_2, V_3)$

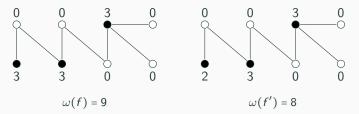
The weight of a DRDF f is the sum of the labels of the vertices of G under f and is denoted by $\omega(f)$.



The **weight** of a DRDF f is the sum of the labels of the vertices of G under f and is denoted by $\omega(f)$.



 The double Roman domination number is the least weight of a DRDF of G and is denoted by γ_{dR}(G). The **weight** of a DRDF f is the sum of the labels of the vertices of G under f and is denoted by $\omega(f)$.



- The double Roman domination number is the least weight of a DRDF of G and is denoted by γ_{dR}(G).
- Given k ∈ N, deciding whether an arbitrary G has γ_{dR}(G) ≤ k is NP-Complete, even when restricted to bipartite, chordal and planar graphs.

 Ahangar et al. [1] completely determined γ_{dR}(G) for graphs with maximum degree 2 (paths and cycles).

- Ahangar et al. [1] completely determined γ_{dR}(G) for graphs with maximum degree 2 (paths and cycles).
- A natural step is to consider graphs with maximum degree 3, specially cubic graphs.

- Ahangar et al. [1] completely determined γ_{dR}(G) for graphs with maximum degree 2 (paths and cycles).
- A natural step is to consider graphs with maximum degree 3, specially cubic graphs.

Theorem 1 (Ahangar et al. [1])

Every cubic graph G with n vertices has $\gamma_{dR}(G) \leq n$.

This last bound is sharp for the complement of the cycle C_6 .

- Ahangar et al. [1] completely determined γ_{dR}(G) for graphs with maximum degree 2 (paths and cycles).
- A natural step is to consider graphs with maximum degree 3, specially cubic graphs.

Theorem 1 (Ahangar et al. [1])

Every cubic graph G with n vertices has $\gamma_{dR}(G) \leq n$.

This last bound is sharp for the complement of the cycle C_6 .

Question 1: Are there families of cubic graphs for which γ_{dR}(G) < n?</p>

- Ahangar et al. [1] completely determined γ_{dR}(G) for graphs with maximum degree 2 (paths and cycles).
- A natural step is to consider graphs with maximum degree 3, specially cubic graphs.

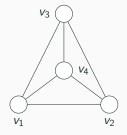
Theorem 1 (Ahangar et al. [1])

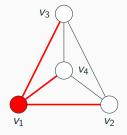
Every cubic graph G with n vertices has $\gamma_{dR}(G) \leq n$.

This last bound is sharp for the complement of the cycle C_6 .

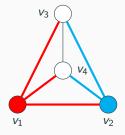
- Question 1: Are there families of cubic graphs for which \(\gamma_{dR}(G) < n?\)</p>
- Question 2: Is determining $\gamma_{dR}(G)$ for graphs with maximum degree 3 an NP-Complete problem?

Result 1: NP-Completeness

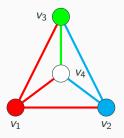




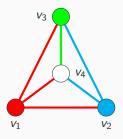
Complete graph K_4



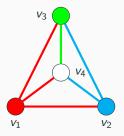
• **Ex.:** *S* = {*v*₁, *v*₂, *v*₃} is a vertex cover of *K*₄.



- **Ex.:** $S = \{v_1, v_2, v_3\}$ is a vertex cover of K_4 .
- $\tau(G)$: cardinality of a minimum vertex cover.



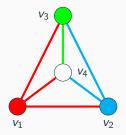
- **Ex.:** $S = \{v_1, v_2, v_3\}$ is a vertex cover of K_4 .
- τ(G): cardinality of a minimum vertex cover.



Complete graph K₄

 VERTEX COVER PROBLEM (VCP): given a graph G and l ∈ N, decide whether G has a vertex cover S with |S| ≤ l.

- **Ex.:** $S = \{v_1, v_2, v_3\}$ is a vertex cover of K_4 .
- τ(G): cardinality of a minimum vertex cover.



Complete graph K_4

- VERTEX COVER PROBLEM (VCP): given a graph G and l ∈ N, decide whether G has a vertex cover S with |S| ≤ l.
- B. Mohar [4] showed that VCP is *NP*-complete even when restricted to 2-connected planar cubic graphs.

Instance: A graph G = (V, E) and a positive integer k. **Question:** Does G have a DRDF f with weight $\omega(f) \le k$?

Instance: A graph G = (V, E) and a positive integer k. **Question:** Does G have a DRDF f with weight $\omega(f) \le k$?

In this work, we prove the following result.

Theorem 2

DRDP is NP-complete even when restricted to planar bipartite graphs with maximum degree 3.

Instance: A graph G = (V, E) and a positive integer k. **Question:** Does G have a DRDF f with weight $\omega(f) \le k$?

In this work, we prove the following result.

Theorem 2

DRDP is NP-complete even when restricted to planar bipartite graphs with maximum degree 3.

Steps of the proof:

• Step 1: Show that DRDP is NP (easy)

Instance: A graph G = (V, E) and a positive integer k. **Question:** Does G have a DRDF f with weight $\omega(f) \le k$?

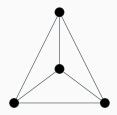
In this work, we prove the following result.

Theorem 2 DRDP is NP-complete even when restricted to planar bipartite graphs with maximum degree 3.

Steps of the proof:

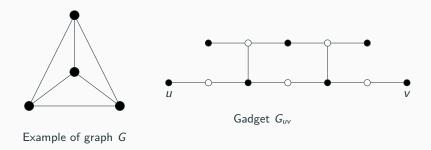
- Step 1: Show that DRDP is NP (easy)
- **Step 2:** Show that DRDP is NP-Hard. We show that there exists a polinomial time reduction from VCP to DRDP.

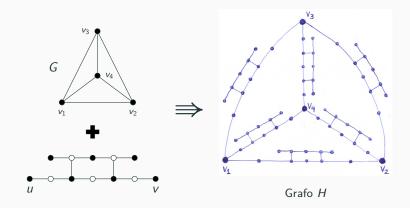
• The input to VERTEX-COVER-PROBLEM is a 2-connected planar 3-regular *G*.

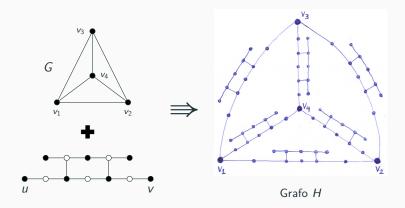


Example of graph G

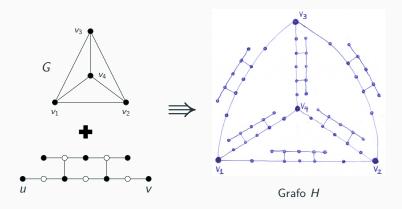
- The input to VERTEX-COVER-PROBLEM is a 2-connected planar 3-regular *G*.
- We take G and substitute each of its edges e = uv by the gadget G_{uv} below, creating a new graph H.



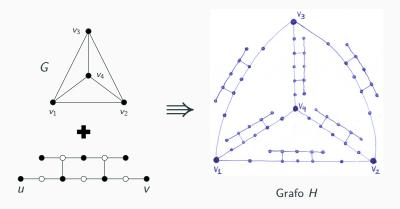




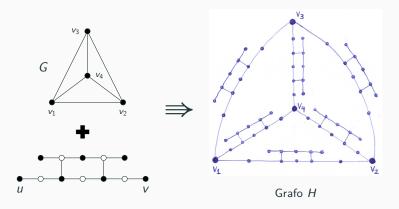
• Gadget G_{uv} is bipartite and u, v are in the same part.



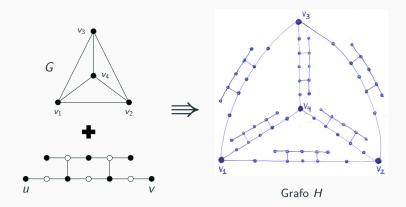
- Gadget *G*_{*uv*} is bipartite and *u*, *v* are in the same part.
- Thus, the resulting graph *H* is also bipartite.



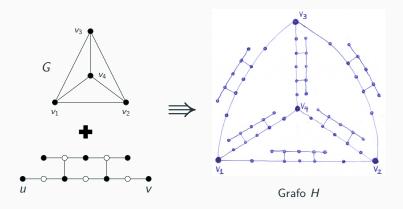
- Gadget G_{uv} is bipartite and u, v are in the same part.
- Thus, the resulting graph *H* is also bipartite.
- *H* is also planar with $\Delta(H) = 3$.



- Gadget G_{uv} is bipartite and u, v are in the same part.
- Thus, the resulting graph *H* is also bipartite.
- *H* is also planar with $\Delta(H) = 3$.
- *H* can be constructed in polinomial time.



• We prove that $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.



• We prove that $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

• Since $\tau(G)$ is hard, then $\gamma_{dR}(H)$ is also hard.

Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

Outline of the proof of the upper bound:

Let C be a vertex cover of G with |C| = τ(G).
 By definition of H, we have that C ⊆ V(G) ⊂ V(H).

Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- Let C be a vertex cover of G with |C| = τ(G).
 By definition of H, we have that C ⊆ V(G) ⊂ V(H).
- Lemma [2]: In a double Roman dominating function of weight $\gamma_{dR}(G)$, no vertex needs to be assigned the label 1.

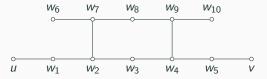
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- Let C be a vertex cover of G with |C| = τ(G).
 By definition of H, we have that C ⊆ V(G) ⊂ V(H).
- Lemma [2]: In a double Roman dominating function of weight $\gamma_{dR}(G)$, no vertex needs to be assigned the label 1.
- We construct a DRDF $f: V(H) \rightarrow \{0, 2, 3\}$ to H with weight $\omega(f) = \tau(G) + 2|V(G)| + 8|E(G)|.$

Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

Outline of the proof of the upper bound:

• For each gadget G_{uv} of H, either $u \in C$, or $v \in C$, or both.



Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- For each gadget G_{uv} of H, either $u \in C$, or $v \in C$, or both.
- For all $x \in C$, assign f(x) = 3. Assign f(x) = 2 for all $x \in V(G) \setminus C$.



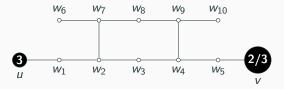
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- For each gadget G_{uv} of H, either $u \in C$, or $v \in C$, or both.
- For all $x \in C$, assign f(x) = 3. Assign f(x) = 2 for all $x \in V(G) \setminus C$.
- Without loss of generality, suppose $u \in C$ for sure.



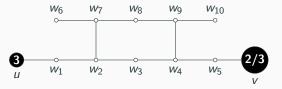
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- For each gadget G_{uv} of H, either $u \in C$, or $v \in C$, or both.
- For all $x \in C$, assign f(x) = 3. Assign f(x) = 2 for all $x \in V(G) \setminus C$.
- Without loss of generality, suppose $u \in C$ for sure.



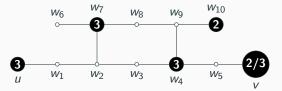
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

• Assign
$$f(w_7) = 3$$
, $f(w_4) = 3$ and $f(w_{10}) = 2$.



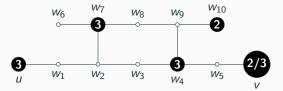
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

• Assign
$$f(w_7) = 3$$
, $f(w_4) = 3$ and $f(w_{10}) = 2$.



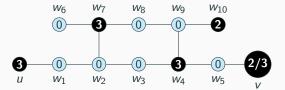
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- Assign $f(w_7) = 3$, $f(w_4) = 3$ and $f(w_{10}) = 2$.
- Assign f(x) = 0 for every remaining unlabeled vertex $x \in G_{uv}$.



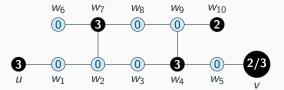
Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

- Assign $f(w_7) = 3$, $f(w_4) = 3$ and $f(w_{10}) = 2$.
- Assign f(x) = 0 for every remaining unlabeled vertex $x \in G_{uv}$.
- Now, we are ready to count the weight of f



Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

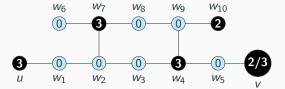
$$\gamma_{dR}(H) \le \omega(f) = 3|C| + 2(|V(G)| - |C|) + 8|E(G)|$$



Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

$$\gamma_{dR}(H) \le \omega(f) = 3|C| + 2(|V(G)| - |C|) + 8|E(G)|$$

= $3\tau(G) + 2|V(G)| - 2\tau(G) + 8|E(G)|$



Given a 2-connected planar cubic graph G, let H be a graph constructed from G by replacing each edge uv in G by a gadget G_{uv} . Then, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.

$$\begin{aligned} \gamma_{dR}(H) &\leq \omega(f) = 3|C| + 2(|V(G)| - |C|) + 8|E(G)| \\ &= 3\tau(G) + 2|V(G)| - 2\tau(G) + 8|E(G)| \\ &= \tau(G) + 2|V(G)| + 8|E(G)|. \end{aligned}$$

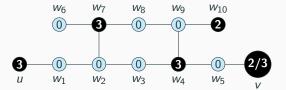
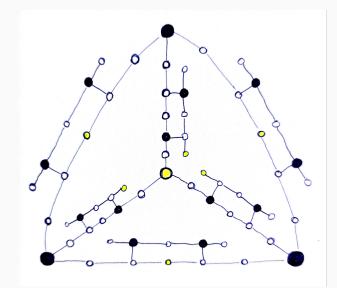
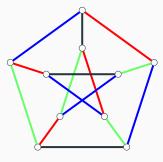


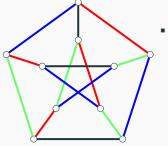
Illustration — Final DRDF of H



Result 2: Double Roman Domination on Snarks

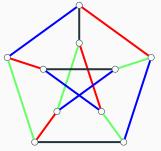


Petersen Graph



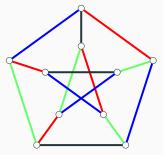
Motivation: Four-Color Conjecture

Petersen Graph



Petersen Graph

- Motivation: Four-Color Conjecture
- 2020 Pereira [5]
 - γ(G): flower snarks, Goldberg snarks, Blanuša snarks, Loupekine snarks



Petersen Graph

- Motivation: Four-Color Conjecture
- 2020 Pereira [5]
 - γ(G): flower snarks, Goldberg snarks, Blanuša snarks, Loupekine snarks
- 2022 Luiz and da Hora [3]
 - γ_R(G): Goldberg snarks, Blanuša snarks, Loupekine snarks

Generalized Blanuša Snarks

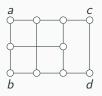
• Two infinity families of snarks constructed by Watkins [8] in 1983.

•
$$\mathfrak{B}^1 = \{B_1^1, B_2^1, B_3^1, \dots\}$$

• $\mathfrak{B}^2 = \{B_1^2, B_2^2, B_3^2, \dots\}$

Generalized Blanuša Snarks

- Two infinity families of snarks constructed by Watkins [8] in 1983.
 - $\mathfrak{B}^1 = \{B_1^1, B_2^1, B_3^1, \dots\}$
 - $\mathfrak{B}^2 = \{B_1^2, B_2^2, B_3^2, \dots\}$
- They are constructed in a recursive way by using subgraphs called construction blocks:



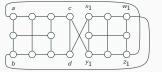
Block A_1

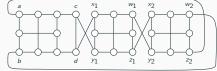
Block A₂

Linkage block Li

Base cases of the recursive construction

The first two smallest snarks of the family \mathfrak{B}^1 :

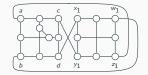


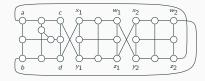


Snark B_1^1

Snark B₂¹

The first two smallest snarks of the family \mathfrak{B}^2 :

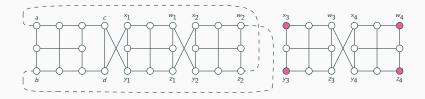




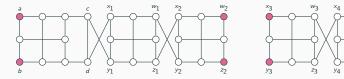
Snark B_1^2

Snark B_2^2 .

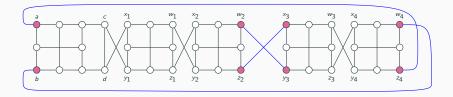
- We want to construct Snark B¹₄.
- B_4^1 is constructed from snark B_2^1 and the linkage block L_4 .



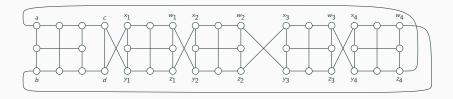
- We want to construct Snark B¹₄.
- B_4^1 is constructed from snark B_2^1 and the linkage block L_4 .



- We want to construct Snark B¹₄.
- B_4^1 is constructed from snark B_2^1 and the linkage block L_4 .



- We want to construct Snark B¹₄.
- B_4^1 is constructed from snark B_2^1 and the linkage block L_4 .



Theorem 4

If B_i^k is a Generalized Blanuša Snark with $k \in \{1,2\}$ and $i \ge 1$, then

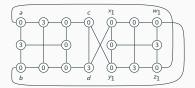
$$\gamma_{dR}(B_i^k) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd}; \\ 6i+9 & \text{otherwise.} \end{cases}$$

Theorem 4

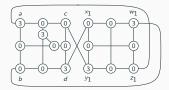
If B_i^k is a Generalized Blanuša Snark with $k \in \{1,2\}$ and $i \ge 1$, then

$$\gamma_{dR}(B_i^k) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd}; \\ 6i+9 & \text{otherwise.} \end{cases}$$

- The proof of the lower bound is a proof by contradiction.
- Due to time constraints, we only show the upper bound, which is an inductive proof.



Snark B_1^1 with a DRDF f with weight $\omega(f) = 6 \cdot 1 + 9 = 15$.



Snark B_1^2 with a DRDF f with weight $\omega(f) = 6 \cdot 1 + 9 = 15$.

A DRDF f_i for a generalized Blanuša snark B_i^k is called **special** if $f_i(a) = 3$, $f_i(b) = 0$, $f_i(w_i) = 3$, $f_i(z_i) = 0$ and has weight

$$\omega(f_i) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd;} \\ 6i+9 & \text{otherwise.} \end{cases}$$

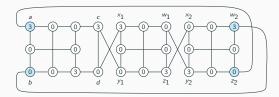
We have four base cases.

A DRDF f_i for a generalized Blanuša snark B_i^k is called **special** if $f_i(a) = 3$, $f_i(b) = 0$, $f_i(w_i) = 3$, $f_i(z_i) = 0$ and has weight

$$\omega(f_i) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd;} \\ 6i+9 & \text{otherwise.} \end{cases}$$

We have four base cases.

Base Case 1: Snark B_2^1 .



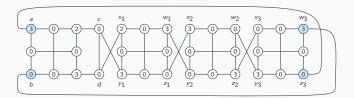
Snark B_2^1 with a special DRDF f_2 with weight $\omega(f_2) = 6 \cdot 2 + 9 = 21$.

A DRDF f_i for a generalized Blanuša snark B_i^k is called **special** if $f_i(a) = 3$, $f_i(b) = 0$, $f_i(w_i) = 3$, $f_i(z_i) = 0$ and has weight

$$\omega(f_i) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd;} \\ 6i+9 & \text{otherwise.} \end{cases}$$

We have four base cases.

Base Case 2: Snark B_3^1 .



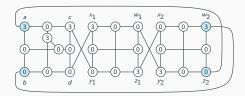
Snark B_3^1 with a special DRDF f_3 with weight $\omega(f_3) = 6 \cdot 3 + 10 = 28$.

A DRDF f_i for a generalized Blanuša snark B_i^k is called **special** if $f_i(a) = 3$, $f_i(b) = 0$, $f_i(w_i) = 3$, $f_i(z_i) = 0$ and has weight

$$\omega(f_i) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd;} \\ 6i+9 & \text{otherwise.} \end{cases}$$

We have four base cases.

Base Case 3: Snark B_2^2 .



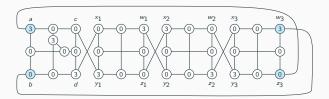
Snark B_2^2 with a special DRDF f_2 with weight $\omega(f_2) = 6 \cdot 2 + 9 = 21$.

A DRDF f_i for a generalized Blanuša snark B_i^k is called **special** if $f_i(a) = 3$, $f_i(b) = 0$, $f_i(w_i) = 3$, $f_i(z_i) = 0$ and has weight

$$\omega(f_i) = \begin{cases} 6i+10 & \text{if } k = 1, i \ge 3 \text{ and } i \text{ odd;} \\ 6i+9 & \text{otherwise.} \end{cases}$$

We have four base cases.

Base Case 4: Snark B_3^2 .

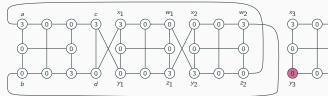


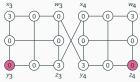
Snark B_3^2 with a special DRDF f_2 with weight $\omega(f_2) = 6 \cdot 2 + 9 = 27$.

• We illustrate the induction step for snarks B_i^k with k = 1.

- We illustrate the induction step for snarks B_i^k with k = 1.
- The remaining case k = 2 is similar.

- We illustrate the induction step for snarks B_i^k with k = 1.
- The remaining case k = 2 is similar.
- Let us construct a special DRDF for B_4^1 :

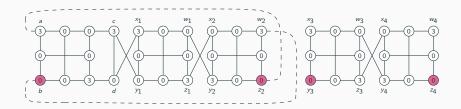




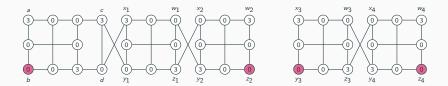
Special DRDF of B_2^1

Partial labeling of the linkage graph L_4

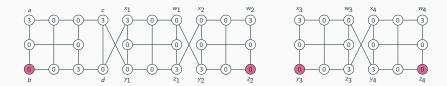
• Remove the out-edges from B_2^1 .



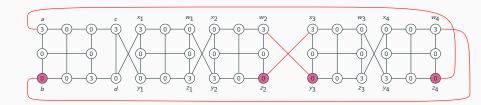
- Remove the out-edges from B_2^1 .
- Some vertices with label 0 do not have neighbors with label 2.



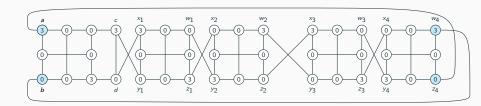
 Add the input-edges linking specific pairs of degree-2 vertices in B¹₂ and L₄.



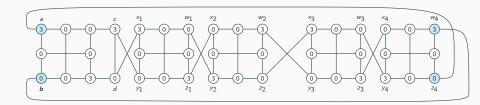
 Add the input-edges linking specific pairs of degree-2 vertices in B¹₂ and L₄.



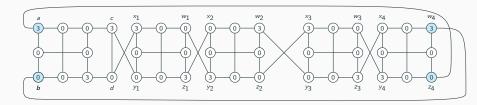
- At the end we have B_4^1 with a special DRDF f_4 .
 - since $f_4(a) = 3$, $f_4(b) = 0$, $f_4(w_4) = 3$, $f_4(z_4) = 0$.



- At the end we have B_4^1 with a special DRDF f_4 .
 - since $f_4(a) = 3$, $f_4(b) = 0$, $f_4(w_4) = 3$, $f_4(z_4) = 0$.
- $\omega(f_4) = \omega(f_2) + \omega(L_4) = 21 + 12 = 33 = 6 \cdot 4 + 9.$

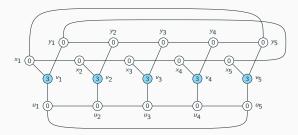


- At the end we have B_4^1 with a special DRDF f_4 .
 - since $f_4(a) = 3$, $f_4(b) = 0$, $f_4(w_4) = 3$, $f_4(z_4) = 0$.
- $\omega(f_4) = \omega(f_2) + \omega(L_4) = 21 + 12 = 33 = 6 \cdot 4 + 9.$
- This concludes the inductive construction.



Flower Snarks — Result

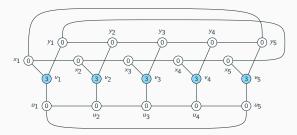
The infinity family of Flower Snarks comprises the graphs F_3, F_5, \ldots, F_i , with *i* odd and $i \ge 3$.



Flower snark F_5 with a DRDF with weight 15.

Flower Snarks — Result

The infinity family of Flower Snarks comprises the graphs F_3, F_5, \ldots, F_i , with *i* odd and $i \ge 3$.

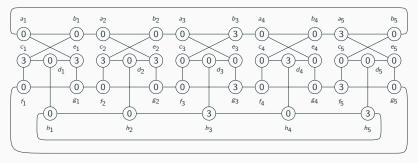


Flower snark F_5 with a DRDF with weight 15.

Theorem 5

If F_i is a flower snark, with $i \ge 3$ and i odd, then $\gamma_{dR}(F_i) = 3i$.

The infinity family of Goldberg Snarks is formed by the graphs $G_3, G_5, G_7, \ldots, G_i$ with $i \ge 3$ and i odd.



Snark G_5 with a DRDF ψ_5 with weight $\omega(\psi_5) = 33$.

Theorem 6

Let G_i be a Goldberg snark. Then

$$\gamma_{dR}(G_i) \leq \begin{cases} 20 & if \ i = 3; \\ 33 & if \ i = 5; \\ \frac{13i+3}{2} & if \ i \geq 7. \end{cases}$$

Theorem 6

Let G_i be a Goldberg snark. Then

$$\gamma_{dR}(G_i) \leq \begin{cases} 20 & if \ i = 3; \\ 33 & if \ i = 5; \\ \frac{13i+3}{2} & if \ i \geq 7. \end{cases}$$

 We verified that this upper bound is sharp for all *i* ≤ 21 using an Integer Linear Program of Cai et al. [6].

Theorem 6

Let G_i be a Goldberg snark. Then

$$\gamma_{dR}(G_i) \leq \begin{cases} 20 & if \ i = 3; \\ 33 & if \ i = 5; \\ \frac{13i+3}{2} & if \ i \geq 7. \end{cases}$$

 We verified that this upper bound is sharp for all *i* ≤ 21 using an Integer Linear Program of Cai et al. [6].

Theorem 7

If G_i is a Goldberg snark, with $i \ge 3$ and i odd, then $\gamma_{dR}(G_i) \ge 6i + 2$.

Theorem 6

Let G_i be a Goldberg snark. Then

$$\gamma_{dR}(G_i) \leq \begin{cases} 20 & if \ i = 3; \\ 33 & if \ i = 5; \\ \frac{13i+3}{2} & if \ i \geq 7. \end{cases}$$

 We verified that this upper bound is sharp for all *i* ≤ 21 using an Integer Linear Program of Cai et al. [6].

Theorem 7

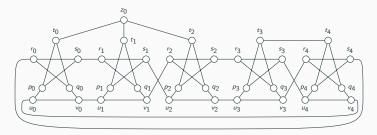
If G_i is a Goldberg snark, with $i \ge 3$ and i odd, then $\gamma_{dR}(G_i) \ge 6i + 2$.

• This lower bound is tight for G_3 . That is, $\gamma_{dR}(G_3) = 20$.

Luiz and Vieira

Loupekine Snarks

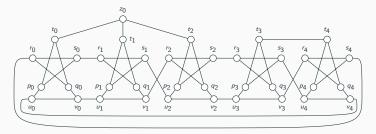
The infinity family of Loupekine snarks is formed by the graphs GL_3, GL_5, \ldots, GL_i with *i* odd and $i \ge 3$.



A Loupekine snark GL_3 with 5 basic blocks.

Loupekine Snarks

The infinity family of Loupekine snarks is formed by the graphs GL_3, GL_5, \ldots, GL_i with *i* odd and $i \ge 3$.



A Loupekine snark GL_3 with 5 basic blocks.

Theorem 8

If GL_i is a Loupekine snark with odd $i \ge 3$ and n vertices, then $\left\lceil \frac{3n}{4} \right\rceil + 1 \le \gamma_{dR}(GL_i) \le 6i$.

Concluding Remarks

1. Proved that DRDP is NP-complete when restricted to planar bipartite graphs with maximum degree 3.

- 1. Proved that DRDP is NP-complete when restricted to planar bipartite graphs with maximum degree 3.
- 2. Determined $\gamma_{dR}(G)$ for generalized Blanuša snarks and Flower snarks.

- 1. Proved that DRDP is NP-complete when restricted to planar bipartite graphs with maximum degree 3.
- 2. Determined $\gamma_{dR}(G)$ for generalized Blanuša snarks and Flower snarks.
- 3. Presented lower and upper bounds for $\gamma_{dR}(G)$ of Goldberg snarks and Loupekine snarks.

- 1. Proved that DRDP is NP-complete when restricted to planar bipartite graphs with maximum degree 3.
- 2. Determined $\gamma_{dR}(G)$ for generalized Blanuša snarks and Flower snarks.
- 3. Presented lower and upper bounds for $\gamma_{dR}(G)$ of Goldberg snarks and Loupekine snarks.

Open Problems:

1. Conjecture: $\gamma_{dR}(G_i) = \frac{13i+3}{2}$ for all Goldberg snark with $i \ge 7$.

- 1. Proved that DRDP is NP-complete when restricted to planar bipartite graphs with maximum degree 3.
- 2. Determined $\gamma_{dR}(G)$ for generalized Blanuša snarks and Flower snarks.
- 3. Presented lower and upper bounds for $\gamma_{dR}(G)$ of Goldberg snarks and Loupekine snarks.

Open Problems:

- 1. Conjecture: $\gamma_{dR}(G_i) = \frac{13i+3}{2}$ for all Goldberg snark with $i \ge 7$.
- 2. Study the parameter γ_{dR} for other families of cubic graphs.

Thank you

Luiz and Vieira

Double Roman Domination on graphs with maximum degree 3

References

- Hossein Abdollahzadeh Ahangar, Mustapha Chellali, and Seyed Mahmoud Sheikholeslami.
 On the double roman domination in graphs. Discrete Applied Mathematics, 232:1–7, 2017.
- [2] Robert A. Beeler, Teresa W. Haynes, and Stephen T. Hedetniemi. Double roman domination.

Discrete Applied Mathematics, 211:23–29, 2016.

[3] Atílio G. Luiz.

Roman domination and independent roman domination on graphs with maximum degree three.

Discrete Applied Mathematics, 348:260–278, 2024.

[4] Bojan Mohar.

Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory, Series B, 82(1):102–117, 2001.

References

[5] A. A. Pereira.

Conjuntos dominantes em grafos cúbicos.

mathesis, Universidade Estadual de Campinas, 2020.

 [6] Yongtang Shi Qingqiong Cai, Neng Fan and Shunyu Yao.
 Integer linear programming formulations for double roman domination problem.

Optimization Methods and Software, 37(1):1–22, 2022.

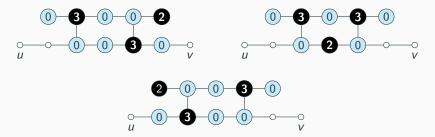
[7] Zehui Shao, Pu Wu, Huiqin Jiang, Zepeng Li, Janez Žerovnik, and Xiujun Zhang.

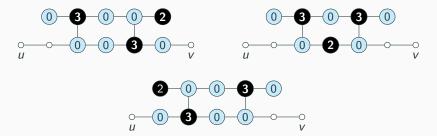
Discharging approach for double roman domination in graphs. *IEEE Access*, 6:63345–63351, 2018.

[8] John J Watkins.

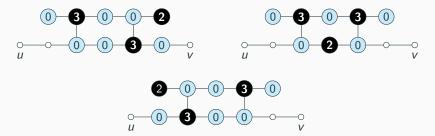
On the construction of snarks.

Ars Combinatoria, 16:111–124, 1983.



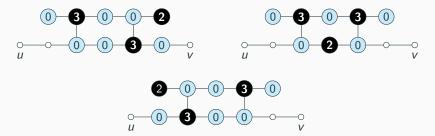


In each case, either u or v must have label 3 (vertex cover of G).



- In each case, either *u* or *v* must have label 3 (vertex cover of *G*).
- Using these facts, we prove the lower bound

 $\gamma_{dR}(H) \ge \tau(G) + 2|V(G)| + 8|E(G)|$



- In each case, either *u* or *v* must have label 3 (vertex cover of *G*).
- Using these facts, we prove the lower bound

 $\gamma_{dR}(H) \ge \tau(G) + 2|V(G)| + 8|E(G)|$

• Therefore, $\gamma_{dR}(H) = \tau(G) + 2|V(G)| + 8|E(G)|$.